Transmission Direction:

- **Simplex:** Signals are transmitted in only <u>one direction</u>
- Half-Duplex: Both stations may transmit, but one at a time
- Full-Duplex: Both stations may transmit simultaneously

The designer of Communication System must deal with four factors:

- Signal Bandwidth (Hz or bps) \rightarrow Channel Capacity
- Data Rate of digital information (bps)
- Transmission Impairments (Noise, loss, attenuation, delay,etc.)
- Accepted error-rate level \rightarrow **Bit Error Rate** (BER)

Transmission Modes: Serial Transmission Parallel Transmission

- Serial Transmission (USART)
 - Asynchronous Mode
 Synchronous Mode
- USART 8250 → 8088 Intel 9600bps, 19200bps
- USART 16450→ 80286 PCAT 19200bps
- USART 16550 → 80386,80486, Pentium 115.2kbps
- USART= converts parallel data transmission to *serial transmission*. (The bits are sent in sequence over a line).

Ex (1): Direct Connection (Short distance)

Ex(2): MODEM (Long distance)

PSTN=Public Switched Telephone Network ISDN=Integrated Services Digital Network

Asynchronous Mode:

□ It can occur at any time for sending letters e.g. ASCII (7bits)

□ Each character has **Start** and **Stop** bits

□ When **no Data** are being transmitted a receiver stays in **High-State**.

-It is used for low-speed transmission – e.g. RS-232C (15meters, 38kbpş) ^{9/29/2018}

Example:

Consider Character "I"=49Hex in ASCII is transmitted with 1200 baud with framing format 1 start bit, 2 stop bits and odd parity. Assume 15 meter distance (cable length) and propagation speed=3x10⁵ m/s

Solution:

Baud Rate=Bit Rate = R bps

0 100 1001 = 49HEX using Figure above then \rightarrow 11 bits (Framing):

$$T_{bit} = \frac{1}{R} = \frac{1}{1200} = 0.83$$
ms

Total time required to send char 'I' \rightarrow (Framing):

$$T_{frame} = 11 \times 0.83 = 9.13 ms$$

Propagation Time = Distance/Propagation speed

$$T_{prop} = \frac{d}{v} = \frac{15}{3 \times 10^5} = 50 \,\mu \,\mathrm{sec}$$

Example (1):

Asynchronous data is transmitted in the form of characters as follows: 5 information bits of duration 20ms, and a start bit of the same duration of 20 ms, and a stop bit of duration 30ms. Determine:

(a) The transmission rate in bps.

(b) The signaling rate in bauds.

<u>Sol:</u>

(a)
Total transmission time of a Single Character
$$(T_{total}) \rightarrow$$
 (Framing)
 $T_{total} = (5+1) \times 20 + 1 \times 30 = 150 \text{ms}$

Let *R*= Transmission Rate (Bit Rate)

$$R = \frac{n}{T_{total}} = \frac{7}{150 \times 10^{-3}} = 46.67 \text{ bps}$$

(b) Since the shortest signaling element has duration of 20ms:

Signalling Rate =
$$\frac{1}{20 \times 10^{-3}}$$
 = 50bauds

<u>Note</u>:^{9/29/2018} Bit Rate≠ Baud Rate

Example (2):

A modem transmits using an eight-level signaling technique. If each signaling element has duration of 0.8333ms. Determine:

(a) The baud Rate (b) The bit Rate

Sol:

(a)

Baud Rate=Inverse of the shortest signaling element → (Signal change) Baud Rate=1/0.8333ms=1200 bauds

(b) For 8 levels \rightarrow means $2^3 \rightarrow$ using *n*=3bits for each level (000, 001,....111)

Thus each three bits are transmitted every 0.8333ms,

Bit Rate =
$$\frac{n}{T_{baud}} = \frac{3}{0.833 \times 10^{-3}} = 3600 \text{ bps}$$

Or

Bit Rate =
$$n \times Baud$$
 Rate = $3 \times 1200 = 3600 bps$

Synchronization and Framing:

When does the **Receiver** measure the signal to recover the bits?

At RX, there are **<u>Two Problems</u>**:

- Keeping the correct pace when reading the bits → Synchronization
- Finding Start time T1 and End time
 T2 → Framing

- Using Clock at time (T1+T/2) \rightarrow
- Incorrect clock means Loss of Synchronous → Clock Drift i.e. Not exactly find "Tick" at RX

Example: To avoid Clock Drift (Loss of Synch) at RX

Consider 11 bit sequence including 1 extra bit (i.e. start bit) for clock

Assume at Start bit, Synch is late 10% of T.

Let (clock period) \mathbf{T} at TX Let (clock period) \mathbf{S} at RX.

To find S is the period of the receiver clock, then we must achieve the <u>Two conditions:</u>

(1)
$$(10+0.5) \times S + 10\% \times T < 11 \times T$$

At RX At TX
Clock Clock
and,
(2) $(10+0.5) \times S > 10 \times T$ where $\left| \frac{S-T}{T} \right| < 3.8\%$

Synchronous Mode:

• It transmits long sequences of bits called **Packets** \rightarrow Long Sequences increases **Transmission efficiency**.

• The receiver is synchronized by either very accurate clock (Quartz Clock) or a self-synchronizing code (e.g Bi-phase code) –Manchester code, AMI, 4B/5B

- **Examples**: Bit-oriented and character-oriented Packet transmissions.

Synch Mode: ● No Start bit ● No Stop bits ● No Gaps (Min. interval)
● Hardware Implementation (only) → USART

Asynchronous Mode can be software or hardware implemented.

Parallel Transmission: -Transmitting all bits as one byte (8bit=8lines) or character at one time + control signals (handshaking) –The cable distance is short – Fast data rate (speed) – impractical over long distance (very expensive)

Example: Printer-to PC

RS-232 Cables: DB25 (25 pin)

DB9 (9 pin)

DB25	Signal		DB9	Signal
2	TXD	Transmit Data	2	RXD
3	RXD	Receive Data	3	TXD
4	RTS	Request To Sent	4	DTR
5	CTS	Clear To Send	6,1	DSR, CD
6,8	DSR, CD	Data Set Ready, Carrier Detect	7	RTS
7	GND	Signal Ground	8	CTS
20	DTR	Data Terminal Ready	5	GND
22	RI	Ring Indicator	9	RI

DTE = Data Terminal Equipment. (e.g. PC Terminal.)

DCE = Data Circuit Terminating Equipment. (e.g. Modem, Hub, Switch.)

9/29/2018

Null-Modem (Cross-Connection)						
DTE (PC)		>> << DTE (PC)				
[2]	TXD	←	RXD			
[3]	RXD		TXD			
[4]	RTS		RTS			
[5]	CTS		CTS			
[6]	DSR	× /	DSR			
[7]	SG	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	SG			
[8]	CD	Not Required	CD			
[20]	DTR		DTR			
[21]	RI	Not Required	RI 12			